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Abstract. We discuss the occurrence and the stability of charge density plateaux in ladder-like t−J systems
(at zero magnetization M = 0) for the cases of 2- and 3-leg ladders. Starting from isolated rungs at zero leg
coupling, we study the behaviour of plateaux-related phase transitions by means of first order perturbation
theory and compare our results with Lanczos diagonalizations for t−J ladders (N = 2×8) with increasing
leg couplings. Furthermore we discuss the regimes of rung and leg couplings that should be favoured for
the appearance of the charge density plateaux.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions – 75.10.-b General theory and models of magnetic ordering – 75.10.Jm Quantized
spin models

1 Introduction

The t − J model has been introduced as the first order
correction of the extreme atomic limit of the Hubbard
model [1,2] and is considered the simplest model including
the low energy physics of doped ladder systems [3,4]. The
phase diagram of the two leg Hubbard model has been
investigated in [5] by means of a renormalization group
approach valid for small values of the on-site Coulomb
interaction U but for arbitrary charge density and ar-
bitrary hopping along the rungs. The phase diagram is
classified as different CxSy phases which denotes x gap-
less charge modes and y gapless spin modes. They have
shown under which condition a phase of C1S0 appears
which is analog of either a superconductor or charge-
density wave. The extension of this approach to the N -
leg Hubbard model can be found in [6] where the dimen-
sional crossover as N → ∞ is discussed. The charge and
spin gap for the two leg Hubbard model and its depen-
dence on the on-site Coulomb interaction and the rung
hopping parameter t have been calculated by means of
the density matrix renormalization group (DMRG) and
compared with the previous weak-coupling RG [7]. The
effect of an additional nearest neighbour Coulomb repul-
sion V has been studied in [8]. A charge order (metal-
insulator) transition was found at charge density ρ = 1/2
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from a homogeneous state to a charge density wave. The
influence of an anisotropy between leg and rung couplings
in Hubbard and t − J models on specific correlations,
which signal the metal-insulator transition, has been in-
vestigated in [9]. The metal-insulator transition is accom-
panied by the opening of a gap, which appears as a plateau
in the charge density ρ(µ) as a function of the chemical po-
tential µ. The charge density plateau in ρ(µ) looks similar
to the plateaux in the magnetization curve M(B) found
in the spin ladder systems and one might ask whether
the mathematical foundations for both plateaux are the
same. This is indeed the case and becomes evident if one
maps the t−J Hamiltonian on a spin-1 Hamiltonian with
broken SU(3) symmetry [10]. The Lieb-Schultz-Mattis
theorem [11] has been extended to quasi onedimensional
fermionic systems [12] and the momenta of low-lying exci-
tations could be classified thereby. The quantization rule
of Oshikawa, Yamanaka and Affleck [13] predicts as well
possible plateaux in the charge density ρ(µ).

The values of the charge density (and magnetization)
at the plateaux are fixed by the geometry of the system
(e.g. the number of legs in a ladder system).

In this paper we will study the ground states of the
t − J Hamiltonian on a ladder with n legs (n = 2, 3)

H [n] = tH [n]
r + t′H [n]

l . (1.1)
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Fig. 1. Structure of a two leg ladder with open boundary
conditions and 2Nr sites.
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Fig. 2. Structure of a three leg ladder with open boundary
conditions and 3Nr sites.

t, t′ are the hopping parameters, and

H [n]
r =

Nr∑
x=1

h[n]
r (x, α), α = J/t ,

H
[n]
l =

Nr−1∑
x=1

h
[n]
l (x, α′) α′ = J ′/t′ (1.2)

define the contributions of the couplings along the rungs
and legs, respectively. The spin exchange is included in
the ratios α = J/t, α′ = J ′/t′. The latter are depicted
in Figures 1 and 2 for the cases of a two and a three leg
ladder.

A charge density plateau in ρ(µ) – where µ is the chem-
ical potential – is signaled by discontinuous changes in the
slope of the ground state energy per site as function of ρ
(cf. Eq. (2.12)). They emerge immediately in the “local
rung approximation” [9] (or “bond operator theory” [14]),
where the ground states are direct products of rung cluster
states. The corresponding energies turn out to be piece-
wise linear in ρ.

It is the purpose of this paper to go beyond the local
rung approximation by means of a systematic perturba-
tion theory in the leg coupling t′. To first order, this leads
to an effective interaction between the rung cluster states.
The corresponding effective Hamiltonians are defined on
a chain with Nr sites – where Nr is the number of rungs
– and can be diagonalized numerically.

The outline of the paper is as follows: In Section 2 we
first treat the two leg ladder. Here, the effective Hamiltoni-
ans for ρ < 1/2 and ρ > 1/2 look like modified t−J models
on a chain with Nr sites.

In Section 3 we extend all considerations to the three
leg ladder,where plateaux appear at ρ = 1/3 and ρ =
2/3. First order perturbation theory in t′ leads to three
different effective Hamiltonians in the regimes 0 ≤ ρ ≤
1/3, 1/3 ≤ ρ ≤ 2/3, 2/3 ≤ ρ ≤ 1.

In Section 4 we compare the perturbative results with
Lanczos diagonalizations on ladder systems and discuss
consequences for the phase diagram.

2 T − J model on a two leg ladder

According to the notation given in Figure 1 the couplings
along the rungs and legs which enter into the t − J-
Hamiltonian on a two leg ladder are given by:

h[2]
r (x, α) = h(x, x + Nr, α) , (2.1)

h
[2]
l (x, α′) = h(x, x + 1, α′)

+h(x + Nr, x + 1 + Nr, α
′) . (2.2)

For our purposes it is convenient to represent these
couplings in terms of “constrained” permutation operators

h(x, y, α̃) = −P01(x, y) +
α̃

2
Q11(x, y). (2.3)

Here, P01(x, y) is a permutation operator, which permutes
the states at x and y, if they are occupied by one hole (0)
and one electron (1). This operator allows the hopping of
electrons and holes and forbids the double occupancy of
each site x with two electrons.

If both sites x and y are occupied with electrons, the
operator

Q11(x, y) = P (x, y) − 1, (2.4)
Q11(x, y)|x, y〉 = |y, x〉 − |x, y〉 (2.5)

first interchanges the electrons at x and y; afterwards the
original state is subtracted.

2.1 0th order perturbation theory in t′

The lowest energy eigenstates of the rungs (x, x+Nr) with
Hamiltonian h(x, x + Nr, α) can be easily calculated.

|Q(x) = 0〉 = |0, 0〉
|Q(x) = 1〉 =

1√
2
(|σ, 0〉 + |0, σ〉) (2.6)

|Q(x) = 2〉 =
1√
2
(|+,−〉 − |−, +〉).

The right-hand side defines the states on the sites x and
x+Nr of the rung; 0 means hole with charge zero. Q(x) =
1 means one electron with spin σ = ±1. Q(x) = 2 repre-
sents an electron pair coupled antiferromagnetically to a
total spin 0. Therefore, we have charges 0, 1 and 2 for
|Q(x) = 0〉, |Q(x) = 1)〉 and |Q(x) = 2〉 respectively. The
eigenvalues are given by the following equations.

h(x, x + Nr, α)|Q(x)〉 = εn|Q(x)〉 (2.7)

ε0 = 0; ε1 = −1; ε2 = −α. (2.8)

In the limit of vanishing leg couplings t′ = 0, the system
of decoupled rungs has the following ground state.
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(1) For ρ = Q
2Nr

= 1
2 − q

Nr
≤ 1

2 ; q = 0, 1, 2, . . . and
α < 2 the ground state is a direct product of (Nr − 2q)
rung states |Q(x) = 1(σ)〉 and 2q states with |Q(x) = 0〉.

Note that for α < 2, the creation of a pair state
|Q(x) = 2〉 and a charge zero state |Q(x) = 0〉 from two
charge 1 states |Q(x) = 1(σ = +1)〉 and |Q(x) = 1(σ =
−1)〉 is not energetically favorable, since

ε0 + ε2 > 2ε1. (2.9)

Therefore, the ground state energy turns out to be

E
(0)
1 (ρ, α) = (Nr − 2q)ε1 + 2qε0

= −2Nrρ. (2.10)

(2) For ρ = Q
2Nr

= 1
2 + q

Nr
≥ 1

2 ; q = 0, 1, 2, . . . and
α < 2 the ground state is a direct product of (Nr − 2q)
rung state |Q(x) = 1〉 and 2q states |Q(x) = 2〉 with
electron pairs. In this case the ground state energy is

E
(0)
2 (ρ, α) = (Nr − 2q)ε1 + 2qε2

= 2Nrρ(1 − α) − (2 − α)Nr. (2.11)

Note, in both regimes ρ ≤ 1/2 and ρ ≥ 1/2 the ground
state energy is linear in ρ. The first derivative of the
ground state energy

µ =
d

dρ

E

2Nr
(2.12)

is related to the chemical potential which has a disconti-
nuity at ρ = 1

2 .

µ =
{ −1 for ρ ≤ 1

2
1 − α for ρ ≥ 1

2 ,
(2.13)

This is the first indication of a charge density plateau at
ρ = 1/2 in the t − J model on a two leg ladder.

To zeroth order in the leg coupling (t′), the eigenstates
of the t−J Hamiltonian (1.1) are product states of Nr rung
states:

|Q(1), Q(2), . . . , Q(Nr)〉 =
∏
x

|Q(x)〉. (2.14)

The rung quantum numbers Q(x) = 0, 1(σ = ±1), 2 are
subjected to the conservation of total charge Q,∑

x

Q(x) = Q. (2.15)

Moreover, the total spin, which originates from the spin
of charge 1 states |Q(x) = 1〉, is assumed to be zero here:

∑
x

σ(x)δQ(x),1 = 0. (2.16)

Therefore the ground states with energies (2.10), (2.11)
are highly degenerate for ρ �= 0, 1/2, 1.

2.2 1st order perturbation theory in t′

A first order perturbation theory demands a computation
of the transition matrix elements:

〈Q′(1), Q′(2), . . . , Q′(N)|H [2]
l |Q(1), Q(2), . . . , Q(N)〉 =

Nr−1∑
x=1

A〈Q′(x), Q′(x + 1)|h[2]
l (x, α′)|Q(x), Q(x + 1)〉

(2.17)

where
A =

∏
y �=x,x+1

δQ′(y),Q(y),

and the diagonalization of the resulting effective Hamilto-
nian on a chain with Nr-sites. The matrix elements of the
leg operators between the rung states equation (2.6)

〈Q′(1), Q′(2)|h[2]
l (1, α′)|Q(1), Q(2)〉 ≡

(Q′(1), Q′(2); Q(1), Q(2)) , (2.18)

– the explicit spin dependence of the electrons has been
omitted here – are listed in the following equations:

(0, 0; 0, 0) = 0 , (σ, 0; σ, 0) = 0 , (2.19)

(σ′
1, σ

′
2; σ1, σ2) =

α′

4
〈σ′

1, σ
′
2|P (1, 2) − 1|σ1, σ2〉 , (2.20)

(σ, 0; 0, σ) = −1 , (σ, 2; 2, σ) = −1
2

, (2.21)

(2, σ; 2, σ) = −α′

4
, (2, 2; 2, 2) = −α′

2
. (2.22)

From these equations we can read off the effective Hamil-
tonian on a chain with Nr sites. Since the ground state
structure differs for ρ ≤ 1

2 and ρ ≥ 1
2 as described in

Section 2, we have to consider these two cases separately.
(1) For ρ ≤ 1/2 only rung states with Q(x) = 0 and

Q(x) = 1 are involved. From equations (2.19) and (2.20)
we see that the effective Hamiltonian

Ĥ1(α′) =
Nr−1∑
x=1

ĥ1(x, x + 1, α′) (2.23)

with couplings:

ĥ1(x, x+1, α′) = −P01(x, x+1)+
α′

4
Q11(x, x+1) (2.24)

can be identified with a t− J model (2.3) on a chain with
coupling α′/2, which is just half of the leg coupling. Note
also that the charge density on the chain with Nr sites

ρ1 =
Q

Nr
= 2ρ (2.25)

is just twice the charge density of the two leg ladder. In
first order perturbation theory we get for the ground state
energy on the two leg ladder:

E (ρ, t = 1, α; t′, α′) =

− 2Nrρ + t′Ê1 (ρ1 = 2ρ, α1 = α′/2) + O(t′2). (2.26)
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Here Ê1(ρ1, α1) is the ground state energy of the “effec-
tive” t − J Hamiltonian (2.23) on a chain with Nr sites.
According to equation (2.12) we can calculate the chemi-
cal potential from the first derivative with respect to the
charge density:

µ1(ρ, α; t′, α′) = −1 + t′µ̂1(ρ1, α1) (2.27)

where

µ̂1(ρ1, α1) =
1

Nr

dÊ1

dρ1
(2.28)

is the chemical potential of the t − J model on a chain
with Nr sites and α1 = α′/2 at ρ1 = 2ρ.

(2) For ρ ≥ 1/2 only rung states with Q(x) = 1(σ =
±1) and Q(x) = 2 are involved. From equations (2.20–
2.22) we see that the first part of the effective Hamiltonian:

Ĥ2(α′) =
Nr−1∑
x=1

ĥ2(x, x + 1, α′) (2.29)

with couplings:

ĥ2(x, x + 1, α′) =
{
− P21(x, x + 1) +

α′

2
Q11(x, x + 1)

+ D2(x, x + 1)
}

(2.30)

is indeed a t − J model, if we treat electron pair states
|Q(x) = 2〉 as quasi-holes. The third term (D2) on the
right-hand side of (2.30):

〈Q(x), Q(x + 1)|ĥ2(x, x + 1)|Q(x), Q(x + 1)〉 ={ 0 Q(x) = 1, Q(x + 1) = 1
−α′

2 Q(x) = 2, Q(x + 1) = 1
−α′ Q(x) = 2, Q(x + 1) = 2

(2.31)

takes into account the non-vanishing diagonal
terms (2.22). The ground state energy Ê2(ρ2, α2) of
the effective Hamiltonian

Ĥ2 =
∑

x

ĥ2(x, x + 1, α′) (2.32)

on a chain of Nr sites fixes the first order perturbation
correction to the ground state energy of the two leg ladder
system:

E (ρ, t = 1, α; t′, α′) = −2Nr[1 − α/2 − ρ(1 − α)]

+
t′

2
Ê2(ρ2, α2) + O(t′2) (2.33)

where
ρ2 = 2(1 − ρ), α2 = α′ . (2.34)

Finally, we get the following relation between the chemical
potential µ(ρ, α; t′, α′) of the two leg ladder

µ̂2(ρ2, α2) =
1

Nr

dÊ2

dρ2
, (2.35)

and for the effective Hamiltonian (2.32) on a chain of Nr

sites:

µ2(ρ, α; t′, α′) = 1 − α − t′

2
µ̂2(ρ2, α2) . (2.36)

Combining (2.27) and (2.36), we get for the width of
the charge density plateau at ρ = 1

2 in the first order
perturbation theory:

W (α, t′, α′) ≡ µ2 − µ1

= 2 − α − t′ [µ̂2(ρ2 = 1, α′)/2
+µ̂1(ρ1 = 1, α′/2)] . (2.37)

3 Charge density plateaux
on a three leg ladder

The perturbation treatment of the leg couplings will be
applied now on the three leg ladders. The geometry and
the notion of states can be seen in Figure 2.

The Hamiltonian (1.1) for the 3-leg (n = 3) case is
again constructed from t− J couplings (2.3) on the rungs
and the legs, respectively, and is given by the components

h[3]
r (x, α) = h(x, x + Nr, α) + h(x + Nr, x + 2Nr, α) ,

h
[3]
l (x, α′) =

3∑
l=1

h(x + (l − 1)Nr, x + 1 + (l − 1)Nr, α
′) .

(3.1)

3.1 0th order perturbation theory in t′

The lowest energy eigenstates on the rung Hamiltonian
h

[3]
r (x, α) have been calculated in [15]

|Q(x) = 0〉 = |0, 0, 0〉
|Q(x) = 1〉 =

1
2

{
|σ, 0, 0〉 +

√
2|0, σ, 0〉 + |0, 0, σ〉

}
|Q(x) = 2〉 =

1√
4 + 2b2

{|0, +,−〉− |0,−, +〉
+b|+, 0,−〉− b|−, 0, +〉
+|+,−, 0〉 − |−, +, 0〉}

|Q(x) = 3〉 =
1√
6
{|σ, σ,−σ〉 − 2|σ,−σ, σ〉

+| −σ, σ, σ〉} (3.2)

with

b =
−2
ε2

=
(√

α2 + 8 − α
)

/2 , (3.3)

σ = ±1 .

We have four types of states with charges Q(x) = 0, 1, 2, 3
respectively. Even charge states with Q(x) = 0, 2 carry
total spin 0 and look like “composite bosons”. Odd charge
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states with Q(x) = 1, 3 have total spin 1/2 and look like
“composite fermions”. The energies of the four states are:

ε0 = 0, ε1 = −
√

2

ε2 = −1
2

(√
α2 + 8 + α

)
, ε3 = −3

2
α . (3.4)

If we compute the ground state energy of the three leg
ladder in the limit of vanishing leg coupling t′ = 0, we
have to discriminate the following three cases:

(1) regime: 0 ≤ ρ ≤ 1/3 (ρ = 1/3 − 2q/3Nr)
The ground state is a direct product of Nr − 2q rung

states |Q(x) = 1(σ)〉 with charge 1 and 2q rung states
|Q(x) = 0〉 with charge 0.

E
(0)
1 (ρ, α) = (Nr − 2q)ε1 + 2qε0 = 3Nrρε1. (3.5)

The creation of a charge 2 state (|Q(x) = 2〉) and a
charge 0 state (|Q(x) = 0〉) from two charge 1 states costs
energy, since

ε0 + ε2 > 2ε1 for α <
3√
2

(3.6)

(2) regime: 1/3 ≤ ρ ≤ 2/3 (ρ = 1/3 + 2q/3Nr)
The ground state is a direct product of Nr − 2q rung

states with charge 1 and 2q rung states with charge 2.

E
(0)
2 (ρ, α) = (Nr − 2q)ε1 + 2qε2

= Nr{(2 − 3ρ)ε1 + (3ρ − 1)ε2}. (3.7)

The creation of a charge 3 state and a charge 1 state from
two charge 2 states costs energy since

ε1 + ε3 ≥ 2ε2 for α > 0 (3.8)

(3) regime: 2/3 ≤ ρ ≤ 1 (ρ = 1 − 2q/3Nr)
The ground state is a product of Nr − 2q rung states

with charge 3 and 2q with charge 2.

E
(0)
3 (ρ, α) = (Nr − 2q)ε3 + 2qε2(α)

= Nr{(3ρ− 2)ε3 + 3(1 − ρ)ε2}. (3.9)

Note that the ground state energies are linear again in the
charge density. Therefore, we get for the chemical poten-
tials:

µ(ρ) =
1

3Nr

dE

dρ
(3.10)

µ
(0)
1 (ρ, α) = ε1 for 0 ≤ ρ ≤ 1/3 ,

µ
(0)
2 (ρ, α) = ε2 − ε1 for 1/3 ≤ ρ ≤ 2/3 ,

µ
(0)
3 (ρ, α) = ε3 − ε2 for 2/3 ≤ ρ ≤ 1 . (3.11)

These are the results for the zeroth order (t′ = 0) in the
leg couplings [hl in (3.1)].

Table 1. Effective couplings for a three leg ladder.

ρ 0 ≤ ρ ≤ 1
3

1
3
≤ ρ ≤ 2

3
2
3
≤ ρ ≤ 1

Qrung Q = 0, 1 Q = 1, 2 Q = 2, 3

µ0th ε1 ε2 − ε1 ε3 − ε2

ρeff. ρ1 = 3ρ ρ2 = 2 − 3ρ ρ3 = 3ρ − 2

Heff. t1Ĥ1(α1) t2Ĥ2(α2) t3Ĥ3(α3)

teff. t1 = t′ t2 = b2+2
√

2b+2
4(b2+2)

t′ t3 = 3
2(b2+2)

t′

αeff. α1 = 3
8
α′ α2 = 3(b2+2)

2(b2+2
√

2b+2)
α′ α3 = 2(b2+2)

3
α′

µ1st t1µ̂1(ρ1, α1) −t2µ̂2(ρ2, α2) t3µ̂3(ρ3, α3)

3.2 1st order perturbation theory in t′

The first order calculation starts from the matrix ele-
ments of the leg couplings (3.1) between the zeroth or-
der states (3.2). The results of this tedious calculation are
summarized in Table 1.

The first row defines the 3 regimes of charge den-
sity ρ. In each regime, the zeroth order ground state is
built up from direct products of rung cluster states with
charge Q listed in the second row. The chemical poten-
tials (3.10–3.11) in zeroth order are listed in the third
row.

First order perturbation theory in the leg couplings
leads to the effective Hamiltonians with nearest neighbour
interactions on a chain of Nr sites in each sector of ρ (5th
row of Tab. 1). These Hamiltonians contain two parts:

tjĤj(αj) = tj

Nr−1∑
x=1

ĥj(x, x + 1, αj) , (j = 1, 2, 3) ,

= tj [Ht−J(t = 1, α = αj) + Dj ] . (3.12)

The first one is of the t−J type (2.3) with effective hopping
parameter tj (6th row of Tab. 1) and spin coupling αj (7th
row of Tab. 1).

The second part Dj , j = 1, 2, 3 with D1 ≡ 0 takes
into account diagonal terms, which are not present in the
t − J Hamiltonian:

〈
1, 2|ĥ2(x, x + 1, α′)|1, 2

〉
=

−(b2 + 3)
8(b2 + 2)

α′ (3.13)

〈
2, 2|ĥ2(x, x + 1, α′)|2, 2

〉
=

−(b4 + 2b2 + 3)
2(b2 + 2)2

α′ (3.14)

〈
2, 3|ĥ3(x, x + 1, α′)|2, 3

〉
=

−α′

2
(3.15)〈

3, 3|ĥ3(x, x + 1, α′)|3, 3
〉

=
−α′

2
. (3.16)

Note that in the three leg ladder case the effective hop-
ping terms t2 and t3 as well as the effective couplings α2
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and α3 depend on the rung coupling α via (3.3). This does
not occur in the two leg ladder case.

If we denote the ground state energies of the effective
Hamiltonian Hj on a chain with Nr sites by Ej(ρj , αj)
and the corresponding chemical potential by

µ̂j(ρj , αj) =
1

Nr

dÊj

dρj
(3.17)

we can express the first order correction to the chemical
potential of the three leg ladder in terms of (3.17) (last
row of Tab. 1). The relation between the charge density ρ
on the ladder system and the charge density ρj in the
effective one dimensional system can be found in the 4th
row of Table 1.

4 Numerical results

In this section we are going to present numerical results
for the ground state energies and the chemical potentials
of the two and three leg ladder. Our results were obtained
with open boundary conditions to facilitate the compari-
son with future DMRG calculations which can be done on
larger systems. Other boundary conditions – e.g. periodic
ones – can be incorporated as well.

4.1 Two leg ladders

The ground state energies Êj(ρj , αj) of the effective
Hamiltonians Ĥj j = 1, 2 (cf. (2.23) and (2.29)) on
a chain with Nr sites have been computed for Nr =
8, 10, 12, 14, 16, (18)1 and

α′ = 2.7, α1 =
α′

2
= 1.35, α2 = α′ = 2.7 . (4.1)

For ρ1 = 0 and ρ2 = 0 these energies are known:

Ê1(ρ1 = 0, α1) = 0 , (4.2)

Ê2(ρ2 = 0, α2) = −α2(Nr − 1) . (4.3)

For ρ1 = 1 and ρ2 = 1 the ground state energies are
given by the nearest neighbour Heisenberg chain (with
open boundary conditions)

Ê1(ρ1 = 1, α1 = α′/2) =
1
2
Ê2(ρ2 = 1, α2 = α′) . (4.4)

The finite-size dependence has been analyzed with an
ansatz:

êj(ρj , αj) =
Êj(ρj , αj)

Nr + Nj(ρj)
, j = 1, 2 , (4.5)

for the ground state energies per site.
1 The 18-site systems have been evaluated for Q =

0, 2, 4, 6, 16, 18. For the Q values inbetween, the dimension of
the Hilbert spaces exceeded our computer capacities.
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Fig. 3. Ground state energies per site bj êj(ρj , αj) (Eqs. (4.5)

and (4.9)) for the effective Hamiltonians Ĥj (j = 1, 2) of
the two leg ladder with α2 = α′ = 2.7 – results for Nr =
8, 10, . . . , (18) and optimized polynomial fits.

Table 2. Parameters a
(0,1,2)
j , j = 1, 2 in the fit (4.9) for the

energies bj êj(ρj , αj) shown in Figure 3.

j a
(0)
j a

(1)
j a

(2)
j

1 −0.9346 −1.3769 0.0167

2 0.4154 −0.2384 0.0580

From (4.3) we get

N2(ρj = 0) = −1 . (4.6)

A finite-size analysis of the Heisenberg chain (t− J chain
at ρ = 1) yields

Nj(ρj = 1) = −0.6 , j = 1, 2 , (4.7)

which means that finite-size effects change with ρj . We
assume here a linear interpolation:

Nj(ρj) = −1 + 0.4ρj , j = 1, 2 , (4.8)

between the boundary values (4.6) and (4.7).
Indeed, this procedure has the effect, that the

data points for N = 12, 14, 16, (18) follow unique
curves ê1(ρ1, α1) and ê2(ρ2, α2)/2 as is demonstrated in
Figure 3.

The smooth dependence on the charge densities can
be parametrized in such a way

bj êj(ρj , αj) = bj êj(ρj = 0, αj)

+ ρj

(
a
(0)
j + a

(1)
j (1 − ρj) + a

(2)
j (1 − ρj)2

)
(4.9)

that the constraints (4.2–4.4) are built in explicitly:

b1 = 1.0 , ê1(ρ1 = 0, α1) = 0,

b2 = 1/2 , ê2(ρ2 = 0, α2) = −α′ . (4.10)

In Table 2 we list the coefficients of the fit (4.9).
In Figure 4 we compare the first order predic-

tions (2.26), (2.33) for the ground state energies per
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Fig. 4. Zero (dotted line) and first order (solid lines) predic-
tions for two leg ladders with α = 0.5, α′ = 2.7 and leg cou-
plings t′ = 0.1(a), 0.2(b), 0.3(c) as well as the corresponding
Lanczos energies for a 2 × 8-site ladder (dashed lines).

rung with a Lanczos diagonalization on a two leg lad-
der with 8 rungs and couplings α = 0.5, α′ = 2.7,
t′ = 0.1(a), 0.2(b), 0.3(c). The charge density plateau at
ρ = 1/2 is clearly visible in the discontinuous change of
the slope in the energy per rung as function of ρ.

A remarkable agreement between Lanczos diagonaliza-
tion (dashed curve) and the perturbative result including
first order corrections (solid curve) is achieved for ρ < 1/2.
A comparison with the zeroth order result (dotted curve)
demonstrates that first order corrections are significant.

The situation for ρ > 1/2 is different. Here, we observe
deviations between the Lanczos diagonalization (dashed
curve) and the perturbative results (solid curve) which
increase monotonically with t′ and ρ. Note, that the spin
coupling J ′ along the legs (J ′ = t′α′) is already close to
J ′ = 1 for t′ = 0.3 and α′ = 2.7. This means in particular
for ρ = 1, where the t − J model reduces to a Heisenberg
model with spin couplings J = 0.5 and J ′ = 0.81 (for
t′ = 0.3 and α′ = 2.7), that the product ansatz (2.14) with
rung cluster states (2.6) is an inadequate starting point for
a perturbative expansion. We expect improvements, if we
start with a direct product of more complex clusters – e.g.
plaquettes on the two leg ladder. Moreover, bound states
(hole-pairs) may change the properties of ground state at
large charge density (ρ → 1). This is indeed the case for
α > 2 [16].

Let us next turn to the phase diagram of the two leg
ladder, which is defined by a vanishing plateau width
W (α, t′, α′) [(2.37)]. In general one has to discuss the
phase boundary in the three dimensional parameter space
(α, t′, α′). In first order perturbation theory in t′ (cf.
Eq. (2.37)), however, it is sufficient to discuss the bound-
ary in the plane (2 − α)/t′ versus α′:

2 − α

t′
= ∆(α′)

=
1
2
µ̂2(ρ2 = 1, α′) + µ̂1(ρ1 = 1, α′/2) . (4.11)

We have determined the chemical potentials µ1(ρ1 =
1, α′/2), µ2(ρ2 = 1, α′) from a numerical calculation of

Fig. 5. α′-dependence (first order result) of the plateau width
of the chemical potential of a two leg ladder at ρ = 1/2 –
finite system results and BST-evaluation of the thermodynam-
ical limit (TDL).

the ground state energies per site (4.5) on systems with
Nr = 8, 10, 12, 14, 16, (18) and

α′ = 0.0, 0.3, . . . , 2.7 .

The α′-dependence of ∆(α′) (right-hand side of (4.11)) is
shown in Figure 5. There is a monotonic finite-size depen-
dence and the thermodynamical limit (solid curve) is esti-
mated with the Bulirsch-Stoer (BST) algorithm [17]. The
gapped phase with a nonvanishing plateau at ρ = 1/2 is
characterized by

2 − α

t′
> ∆(α′) (4.12)

i.e. the formation of a plateau at ρ = 1/2 is favoured for

• small rung couplings α = J/t < 2
• large leg couplings α′ = J ′/t′.

4.2 Three leg ladders

The ground state energies Êj(ρj , αj) of the effective
Hamiltonians (5th row of Tab. 1, Eqs. (3.12–3.16)) on
a chain with Nr sites have been computed for Nr =
8, 10, . . . , 16, (18) and

α = 0.5, α′ = 2.7 (4.13)
α1 = 1.0125, α2 = 2.041, α3 = 6.132 .

The finite-size dependence has been analyzed with an
ansatz of the type (4.5) for the ground state energies per
site êj(ρj , αj).

The constraints at ρj = 0 and at ρj = 1 are taken into
account in the linear interpolations

Nj(ρj) = −1 + 0.4ρj , j = 1, 2 ,

N3(ρ3) = −1 + 0.232ρ3 . (4.14)
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Fig. 6. Ground state energies per site bj êj(ρj , αj) (4.5, 4.9)

for the effective Hamiltonians Ĥj (j = 1, 2, 3) of the three leg
ladder with α = 0.5, α′ = 2.7 – results for Nr = 8, 10, . . . , (18)
and optimized polynomial fits.

Table 3. Parameters a
(0,1,2)
j , j = 1, 2, 3 in the fits for the

energies bj êj(ρj , αj) shown in Figure 6.

j a
(0)
j a

(1)
j a

(2)
j

1 −0.7010 −1.6209 −0.0260

2 0.2054 −0.4364 0.1630

3 −2.3129 −0.4460 0.5739

The factors bj in Figure 6, (4.16)

bj =
tj
t′

(4.15)

reflect the “renormalization” of the hopping term (6th row
in Tab. 1). A plot of bjej(ρj , αj), j = 1, 2, 3, α = 0.5,
α′ = 2.7 on the finite systems is shown in Figure 6.

The data points do not scatter with the system size but
follow unique curves, which can be considered as a reliable
estimate of the thermodynamical limit. Their dependence
on the effective charge densities ρeff (fourth row in Tab. 1)
is parametrized by an ansatz of type (4.9). The resulting
coefficients with

b1 = 1.0, ê1(ρ1 =0, α1) =0,

b2 = 0.49618, ê2(ρ2 =0, α2) =−8
3
α2

b4 + 2b2 + 3
2(b + 2)2

,

b3 = 0.44028, ê3(ρ3 =0, α3) =−α3
b4 + 2b2 + 3
2(b + 2)2

, (4.16)

are listed in Table 3.
Looking at the phase diagram of the three leg ladder we

have to distinguish four regimes in the three dimensional
parameter space of α, t′, α′:

I plateaux at ρ = 1/3, 2/3
II plateau at ρ = 1/3, no plateau at ρ = 2/3

III plateau at ρ = 2/3, no plateau at ρ = 1/3
IV no plateau.

Fig. 7. First order results for the (t′, α′)-dependence of the
boundaries of the plateau regimes (I−IV ) of a three leg ladder
– finite system results and BST-evaluation of the TDL.

The phase boundaries are defined by the vanishing of the
plateau width (cf. rows 3 and 8 in Tab. 1):

ρ = 1/3 :
W1/3 = ε2 − 2ε1

−t′ (b2µ̂2(ρ2 = 1, α2) + b1µ̂1(ρ1 = 1, α1))
(4.17)

ρ = 2/3 :
W2/3 = ε3 + ε1 − 2ε2

+t′ (b3µ̂3(ρ3 = 0, α3) + b2µ̂2(ρ2 = 0, α2)) .

(4.18)

In first order perturbation theory the widths are linear
in t′ and it is therefore convenient to represent the phase
boundaries in the form

t′1/3 = t′1/3(α, α′)

=
ε2 − 2ε1

(b1µ̂1(ρ1 = 1, α1) + b2µ̂2(ρ2 = 1, α2))
(4.19)

t′2/3 = t′2/3(α, α′)

= − ε3 + ε1 − 2ε2

(b3µ̂3(ρ3 = 0, α3) + b2µ̂2(ρ2 = 0, α2))
. (4.20)

The four phases defined above are characterized by
I t′1/3(α, α′) ≥ t′ ≥ 0 , t′2/3(α, α′) ≥ t′ ≥ 0 ,

II t′1/3(α, α′) ≥ t′ ≥ 0 , t′ ≥ t′2/3(α, α′) ,
III t′ ≥ t′1/3(α, α′) , t′2/3(α, α′) ≥ t′ ≥ 0 ,
IV t′ ≥ t′1/3(α, α′) , t′ ≥ t′2/3(α, α′) .

We have computed the phase boundaries t′1/3(α, α′)
and t′2/3(α, α′) from the ground state energies of

the effective Hamiltonians Ĥj (3.12) on systems with
10, 12, . . . , (18) sites for

α = 1/2 , α′ = 0.0, 0.3, . . . , 2.7 .

This projection of the phase diagram is shown in Figure 7.
The thermodynamical limits (TDLs; solid curves) are es-
timated with the BST algorithm [17].
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5 Discussion and perspectives

Quasi onedimensional quantum systems – like the
Heisenberg model or the t− J model – defined on ladders
with l legs show a characteristic sequence of gaps in their
spectrum. They appear as plateaux in the magnetization
curve M(B) and the charge density ρ(µ) (as functions of
the magnetic field B and chemical potential µ, respec-
tively) for the spin and charge degrees of freedom. The
quantization rule of Oshikawa, Yamanaka and Affleck [13]
defines the values of M and ρ where these might occur.
The mechanism which creates the plateaux can be stud-
ied in a perturbation expansion in the leg couplings t′;
α′ = J ′/t′ fixed. To zeroth order the ground states – at
fixed magnetization M and/or charge density ρ – are prod-
ucts of rung cluster states. The latter can be classified by
a cluster spin S3 and charge Q. First order perturbation
theory leads to an effective interaction between the rung
cluster states.

We have studied in this paper the 0th and 1st order
perturbation expansion in the leg coupling t′ (for α′ fixed)
on two and three leg ladders. The magnetization – given by
the total spin – has been assumed to be zero. Our results
on the two leg ladder can be summarized as follows:

i) The ground state in the two regimes

0 ≤ ρ ≤ 1/2 (Q = 0, 1)

1/2 ≤ ρ ≤ 1 (Q = 1, 2)

is built up from a direct product of rung cluster states
with Q = 0, 1 and Q = 1, 2, respectively.

Even charge states (Q = 0, 2) have total spin 0 and are
bosonic, odd charge states (Q = 1, (3 for the 3-leg ladder))
have total spin 1/2 and are fermionic. For ρ = 0, 1/2, 1
all rung cluster states have the same charge Q = 0, 1, 2,
respectively.

ii) The effective Hamiltonian, which describes the in-
teraction between the rung cluster states in first order
perturbation theory, looks like a generalized t − J model
on a chain, if we treat fermionic states (Q = 1) as elec-
trons, bosonic ones (Q = 0, 2) as holes. A comparison of
the perturbative results with exact diagonalizations yields
good agreement for the ground state energies in the first
regime (ρ < 1/2, t′ ≤ 0.3), but increasing deviations with
ρ and t′ in the second one.

iii) Increasing the size of the cluster we started with,
will improve these results and might reveal further gaps
in the spectrum. In a next step we will consider a direct
product of plaquette cluster states on the two leg ladder
(Fig. 1). Here, cluster ground states with charges Q(x) =
0, 1, 2, 3, 4 occur, which might induce additional plateaux
at ρ = 1/4 and ρ = 3/4. Indeed, evidence for the existence
of a long range charge density wave state in the t − J
two leg ladder at ρ = 3/4 has been found in a DMRG
calculation [18].

iv) We have studied the stability of the charge density
plateau and the phase diagram in the regime where first
order perturbation theory is applicable. We found that the
formation of a charge density plateau is favoured for

• small values of the couplings α = J/t on the rungs
• large values of the couplings α′ = J ′/t′ on the legs.

In the three leg ladder case, the ground states in 0th
order are built up again from rung cluster states with two
charges:

0 ≤ ρ ≤ 1/3 (Q = 0, 1)

1/3 ≤ ρ ≤ 2/3 (Q = 1, 2)

2/3 ≤ ρ ≤ 1 (Q = 2, 3).

For ρ = 0, 1/3, 2/3, 1 all the rung clusters have the same
charges: Q = 0, Q = 1, Q = 2, Q = 3, respectively.

The method developed here for ladder systems should
be applicable whenever finite clusters containing the
“large” couplings can be defined in a natural way. If we for
instance consider the t−J model on a Shastry-Sutherland
lattice [19], the “large” couplings on the diagonals define
two site clusters. The same arguments we developed here
for the two leg ladder (with two site clusters) can be re-
peated and we expect again a charge density plateau at
ρ = 1/2. Of course the effective interaction between the
cluster states depend on the geometry of the lattice and
are therefore different for the Shastry-Sutherland lattice
and the two leg ladder.

The method developed here for charge density
plateaux is also applicable to magnetization plateaux pro-
vided that finite clusters containing the “large” couplings
can be defined in a natural way. Again, the Heisenberg
model on a Shastry-Sutherland lattice [19] is a good ex-
ample.

However, for a realistic description of the experi-
mentally found magnetization plateaux M = S/N =
1/6, 1/8, 1/16 (S total spin, N total number of sites) one
should start from clusters which at least – requiring inte-
ger total spin for the clusters – contain 6, 8, 16 sites! Of
course the computation of the cluster ground states and
in particular of their interaction becomes more involved
for decreasing magnetization values.

We are indebted to M. Karbach for a critical reading of the
manuscript.
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